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řešení 3. série

POSLOUPNOSTI

úloha 3.1 - Mějme rekurentně definovanou posloupnost

T0 = 0,T1 = 1,T2 = −1

Tn = Tn−2 − Tn−3.

Dokažte, že se v posloupnosti vyskytuje pouze konečně mnoho nul.

řešení: Vypíšeme si prvních pár členů posloupnosti:

T0 = 0,T1 = 1,T2 = −1,T3 = 1,T4 = −2,T5 = 2 . . .

Vidíme, že při výpočtu dalších a dalších členů posloupnosti nastane vždy jeden ze dvou
případů: buď od kladného čísla odečítáme záporné, nebo od záporného čísla odečítáme
kladné. Nabízí se tedy tvrzení, které už jednoduše dokážeme indukcí.

Tvrzení: Pro n ∈ N je T2n−1 > 0 a T2n < 0.

Důkaz: Bázový krok n = 1: T1 = 1 > 0,T2 = −1 < 0
Předpokládejme, že tvrzení bylo dokázáno pro všechna n ∈ {1,2, . . . , k} a my ho nyní
chceme dokázat pro n = k + 1.
T2(k+1)−1 = T2k+1 = T2k−1 − T2(k−1) Z předpokladů ale víme, že T2k−1 > 0 a T2(k−1) < 0. Cel-
kem tedy dostáváme T2(k+1)−1 = T2k−1 − T2(k−1) > 0.
T2(k+1) = T2k+2 = T2k−T2k−1 Z předpokladů ale opět už víme, že T2k < 0 a T2k−1 > 0. Celkem
tedy máme T2(k+1) = T2k − T2k−1 < 0, čímž je tvrzení dokázáno.

Od indexu 1 budou členy posloupnosti tedy vždy buď kladné (pro liché indexy), nebo
záporné (pro sudé), nikoli však nulové. Posloupnost tedy obsahuje konečný počet nul a
to konkrétně jednu T0 = 0.

úloha 3.2 - Množinu M přirozených čísel nazveme skibidi, jestliže každý její prvek kromě
dvou lze jednoznačně vyjádřit jako součet jiných dvou prvků. Dokažte, že existuje neko-
nečně mnoho nekonečně velkých skibidi množin.

řešení: Definujme posloupnost a1 = 1, a2 > 1 ∈ N, an = an−1 + an−2, pro n > 2. Ukážeme,
že množina M prvků této posloupnosti je skibidi. Posloupnost je zřejmě rostoucí a každý
člen přirozený. Proto existují nejmenší dva prvky množiny M, jsou jimi právě a1, a2. Tyto
nejdou zapsat ve tvaru součtu jiných prvků z množiny M. Každý další lze vyjádřit ve
tvaru součtu jako an = an−1+an−2.P edpokldejme,etolzeijinmzpsobem.Bubyjedenzestancmuselbtvtneborovennean,
potom by i součet byl větší než an. V opačném případě budou oba sčítance menší nebo
rovny než an−1, tudíž jejich součet bude menší než an. Vyjádření součtu je tedy jedno-
značné, proto je M skibidi.

Množina M je zjevně nekonečně velká.
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Nekonečné množství těchto nekonečných skibidi množin zaručíme nekonečným množ-
stvím možností pro volbu a2.

úloha 3.3 - Mějme rekurzivně definovanou posloupnost: an+1 =
(
n!
an

)(−1)n
a víme, že a2025 =

2025!
a1

. Jakých všech hodnot může nabývat a1? Výsledek nemusíte vyčíslit.

řešení: Uvažujme an liché a vyjádřeme jeho pomocí další členy:
an+1 = an

n! ,

an+2 = (n+1)!
an+1

= n!(n+1)!
an

,

an+3 = an+2
(n+2)! = n!(n+1)!

(n+2)!an
,

an+4 = (n+3)!
an+3

= an
(n+3)!(n+2)!
n!(n+1)! = an(n+ 1)(n+ 2)2(n+ 3)

Vidíme, že lze poměrně elegantně vyjádřit an+4k pomocí an. To se nám hodí, neboť
4|(2025-1) a můžeme takto vyjádřit a2025 pomocí a1. Celkem máme dvě různá vyjádření
pro vztah mezi a1 a a2025:

a2025 = 2025!
a1

a a2025 = a1(2 · 32 · 4)(6 · 72 · 8) · · · (2022 · 20232 · 2024), jejich spojením a
úpravami dostáváme

a2
1 = 2025!

(2·32·4)(6·72·8)···(2022·20232·2024) = 5
3

9
7 · · ·

2025
2023 ⇒ a1 = ±

√
5
3

9
7 · · ·

2025
2023

pozn. Uznávali jsme i řešení bez vykrácení faktoriálů - výsledek je pak tvaru a1 =

±
√

2025!2022!2021!2018!···2!1!
2024!2023!2020!···4!3!

úloha 3.4 - Máme nekonstantní posloupnost A 2025 čísel. V prvním kroku vytvoříme
novou posloupnost B tak, že jako i-tý člen vezmeme minimum i-tého člene předchozí po-
sloupnosti a aritmetického průměru jeho dvou sousedních členů, tedy bi = min

{
ai ,

(ai−1+ai+1)
2

}
.

(Bereme to tak, že první a poslední člen spolu sousedí.) V druhém kroku vytvoříme stej-
ným způsobem posloupnost C z posloupnosti B, pak D z C a tak dále. Řekneme, že
posloupnost se ustálí, pokud už se v dalších krocích nemění. Po kolika krocích se může
posloupnost ustálit?

řešení: Nejdřív se podívejme, jak může vypadat ustálená posloupnost. Je zřejmé, že
konstatní posloupnost je ustálená, a sporem dokážeme, že žádná jiná už ne. Připusťme,
že máme posloupnost, která je ustálená, ale není konstatní. Potom v takové posloupnosti
existuje maximální prvek (největší nebo jeden z největších) xi takový, že xi+1 < xi . Jelikož
je posloupnost ustálená, znamená to, že

min{xi ,
xi−1 + xi+1

2
} = xi ,

tedy že

xi ≤
xi−1 + xi+1

2
.

Spolu s xi+1 < xi z toho vyplývá xi−1 > xi , což je ale spor s tím, že xi je maximální
prvek.

Nyní nám zbývá vyšetřit, po kolika krocích se z nekonstantní posloupnosti může stát
konstantní. Určitě to může nastat po jednom kroku – třeba v posloupnosti, která obsahuje
jednu jedničku a jinak samé nuly. Naopak existují posloupnosti, které se neustálí nikdy,
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stačí vzít posloupnost se dvěma sousedícími jedničkami a samými nulami jinde. Nenu-
lové členy se v každém kroku zmenší na polovinu zprůměrováním s nulou a ke konstatní
posloupnosti sice budeme konvergovat, ale v konečném počtu kroků jí nedosáhneme.

Mějme posloupnost a předpokládejme, že se po několika krocích ustálí. Označme y
její minimální prvek. Proces tvoření nových posloupností je nerostoucí pro každý člen,
proto minimální prvky budou vždy menší nebo rovny y a jistě nemůžeme dosáhnout
menšího prvku než y průměrováním nějakých větších. Proto se posloupnost musí ustálit
tak, že všechny prvky budou rovny y.

Aby se člen různý od y změnil na y, musí průměr jeho sousedů být y. Jelikož jde o
minimální prvek celé posloupnosti, musejí oba sousedé být rovni y. Máme-li na začátku
dva sousedící prvky, které jsou oba ostře větší než y, nemohou nikdy na odpovídajících
místech vzniknout y. Došli jsme k tomu, že aby se posloupnost někdy ustálila, musí
minimální prvek y být nejméně na každém druhém místě. Taková posloupnost se zřejmě
ustálí v jediném kroku.

Závěrem tedy je, že pokud se posloupnost ustálí, je to vždy po právě jednom kroku.

úloha 3.a - P (x) je polynom s celočíselnými koeficienty a konečným počtem členů. Platí
pro něj xP (x+ 1) = (x+ 1)P (x+ 3). Najděte všechny vyhovující polynomy.

řešení: Dosaďme x = 0:

xP (x+ 1) = (x+ 1)P (x+ 3)

0 = P (3)

Z čehož vyplývá, že 3 je také kořen. Ukážeme, že lichá čísla větší než 2 jsou kořenem.
Jak? Matematickou indukcí.

Bázový krok: Pro 2k + 1 = 3 je 3 kořenem.
Indukční krok: Předpokládejme, že pro všechna 1, . . . k jsou 3,5, . . .2k + 1 kořenem

polynomu P (x). Pak dosaďme za x = 2k

2kP (2k + 1) = (2k + 1)P (2k + 3)

0 = (2k + 1)P (2k + 3)

Protože 2k+ 1 bylo kořenem polynomu tak je levá strana nulová. Protože navíc 2k+ 1
je kladné, dostáváme P (2k+3) = 0, tedy, že 2k+3 je kořenem. Polynom má kořen ve všech
lichých číslech. Víme, že polynom n-tého stupňě má nejvýše n kořenů. Jediný polynom s
nekonečně mnoha kořeny je polynom konstantně nulový.

úloha 3.b - Máme hodiny. Zaznačíme si body A12, A2, A5, A8, A9, kde index určuje pozici
na ciferníku. Označme si bod B1 jako druhý průsečík kružnic nad úsečkami A2A12, A8A12
(jako první průsečík bereme společný bod úseček). B2 bude druhý průsečík kružnic nad
A2A5, A5A8. B3 druhý průsečík kružnic nad A8A9 a A2A9. Ukažte, že B1, B2 a B3 leží na
jedné přímce.
Pozn.: sestrojení kružnice nad úsečkou znamená, že střed kružnice bude ve středu úsečky
a krajní body úsečky leží na dané kružnici (úsečka tvoří průměr kružnice)

řešení: Máme náčrt našeho příkladu.
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Díky pravidelnosti ciferníku víme, že úsečka A2A8 je průměrem našeho ciferníku.
Také si můžeme všimnout, že všechny zadané trojice bodů (A2,A12,A8;A2,A5,A8;A2,A9,A8)
obsahují body A2,A8. Thaletova věta nám říká, že trojúhelníky tvořené těmito trojicemi
budou pravoúhlé a mají společnou přeponu A2A8.

Nyní se podíváme na libovolný pravoúhlý trojúhelník.

Obě odvěsny jsou průměry nových Thaletových kružnic a jejich průsečík P splňuje
|∢APB| = 90◦ = |∢APC|. Úhel ∢BPC je rovinný a průsečík P leží na přeponě trojúhelníku.

Při návratu k původnímu problému můžeme naši myšlenku aplikovat na všechny
tři trojúhelníky. Tím dostaneme, že body B1,B2,B3 budou ležet na přeponě příslušného
trojúhelníku. A jelikož trojúhelníky mají společnou přeponu A2A8, budou body ležet
nejen na jedné přímce, ale na společné úsečce.

úloha 3.c - Určete přirozené číslo n takové, že platí:
n∑

i=−n

∣∣∣∣∣∣
⌈
|i|
2

⌉
sin(i · π

2
)−

⌈
|i|+ 1

2

⌉
cos(i · π

2
)

∣∣∣∣∣∣ = 2054363.
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Pozn.: ⌈ ⌉ představuje horní celou část

řešení: Nejprve se podívám, jak se mi prvky sumy ze zadání liší pro různá n:

i je liché (i = 2k + 1), takže u kosinu dostávám cos
(
k ·π+ π

2

)
, což je 0. Naopak sinus

bude nabývat hodnot ±1 (díky absolutní hodnotě můžu nebrat v úvahu). Nakonec
se ještě zbavím zaokrouhlení nahoru. Výraz se mi tedy zjednoduší na:∣∣∣∣∣∣

⌈
|i|
2

⌉
sin

(
i · π

2

)
−
⌈
|i|+ 1

2

⌉
cos

(
i · π

2

)∣∣∣∣∣∣ =

∣∣∣∣∣∣
⌈
|i|
2

⌉
sin

(
i · π

2

)∣∣∣∣∣∣ =
⌈
|i|
2

⌉
=
|i|+ 1

2
= |k|+ 1

Teď ukážu, že výraz bude nabývat stejných hodnot pro i a −i. Jediné místo, kde
se i nachází mimo absolutní hodnotu, je ve funkcích sinus a kosinus. Jelikož stále
bude platit, že kosinus bude roven 0, tak nám zbývá jenom sinus. Funkce sinus
je lichá funkce: sin(−x) = −sin(x). Jelikož je ale celý výraz v absolutní hodnotě, na
znaménku nám nezáleží. Pro liché i tedy platí, že výraz nabývá stejných hodnot pro
i a −i.

i je sudé (i = 2k), provedu stejné úpravy jako pro liché i. Jediný rozdíl bude ten, že
tentokrát bude sinus roven 0 a kosinus bude nabývat hodnot ±1:∣∣∣∣∣∣
⌈
|i|
2

⌉
sin

(
i · π

2

)
−
⌈
|i|+ 1

2

⌉
cos

(
i · π

2

)∣∣∣∣∣∣ =

∣∣∣∣∣∣−
⌈
|i|+ 1

2

⌉
cos

(
i · π

2

)∣∣∣∣∣∣ =
⌈
|i|+ 1

2

⌉
=
|i|+ 2

2
= |k|+1

Stejně jako u lichého i ukážu, že výraz bude nabývat stejných hodnot pro i a −i.
Tentokrát se mi vynuluje sinus a kosinus je sudá funkce: cos(x) = cos(−x), tudíž zde
rovnou dostávám, že to platí.

Jelikož jsme si ukázali, že hodnota výrazu není závislá na znaménku, můžeme sumu
přepsat následovně (odečítám −1, což je hodnota pro i = 0, protože ji nechci započítávat
dvakrát):

2
n∑
i=0

∣∣∣∣∣∣
⌈
|i|
2

⌉
sin

(
i · π

2

)
−
⌈
|i|+ 1

2

⌉
cos

(
i · π

2

)∣∣∣∣∣∣− 1 = 2054363

Jelikož nám vyšla hodnota |k|+1 u lichých i sudých čísel, sumu lze přepsat do aritme-
tické posloupnosti:

2(1 + 1 + 2 + 2 + 3 + 3 + 4 + 4 + ...+ x)− 1 = 2054363

Abychom byli schopni určit x, musíme určit, jestli je n sudé, nebo liché.

n je sudé, pro n dostáváme hodnotu n+2
2 , pro n−1 hodnotu n

2 . Posloupnost vypadá tedy
následovně:

2(1 + 1 + 2 + 2 + 3 + 3 + 4 + 4 + ...+
n
2

+
n
2

+
n+ 2

2
)− 1 = 2054363

4(1 + 2 + 3 + 4 + ...+
n
2

) +
n+ 2

2
− 1 = 2054363
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Pomocí vzorečku pro aritmetickou posloupnost upravím:

4
(n2 + 1)(n2 )

2
+
n+ 2

2
− 1 = 2054363

n2 + 3n = 2 · 2054363

Tato rovnice ale nemá celočíselný kořen, tudíž n nemůže být sudé.

n je liché, pro n dostáváme hodnotu n+1
2 , pro n − 1 hodnotu n−1

2 . Posloupnost vypadá
tedy následovně:

2(1 + 1 + 2 + 2 + 3 + 3 + 4 + 4 + ...+
n− 1

2
+
n− 1

2
+
n+ 1

2
+
n+ 1

2
)− 1 = 2054363

4(1 + 2 + 3 + 4 + ...+
n+ 1

2
)− 1 = 2054363

Pomocí vzorečku pro aritmetickou posloupnost upravím:

4
(n+1

2 + 1)(n+1
2 )

2
− 1 = 2054363

n2 + 4n+ 1 = 2 · 2054363

Tato rovnice má 2 celočíselné kořeny: 2025 a −2029. Jelikož je v zadání, že n je
přirozené, máme jediné řešení n = 2025.

úloha 3.d - Máme čtvercovou síť a v ní souvislý (pro souvislost stačí se dotknout rohem)
ohraničený útvar tvořený pouze celými čtverečky. Řekneme, že je takový útvar „čtver-
cově konvexní“, jestliže pro libovolné dva čtverce v tomto útvaru platí, že spojnice jejich
středů leží celá v tomto útvaru. Do každého čtverečku útvaru nyní vepíšeme číslo, ur-
čující počet jiných čtverečků útvaru, do kterých se lze z daného čtverečku dostat jedním
pohybem šachového koně. Nalezněte (a zdůvodněte proč další neexistují) všechny takové
útvary, ve kterých jsou pouze lichá čísla. (Útvary, které jsou navzájem shodné můžete po-
važovat za stejné).

řešení: Prázdná množina vyhovuje zadání. Dále předpokládejme, že je útvar neprázdný.
Jelikož je útvar ohraničený, jistě bude existovat čtvereček "nejníže"v tomto útvaru. Tedy
čtvereček, který je součástí útvaru a každý čtvereček, který leží níže již není součástí
našeho útvaru. Začněme tedy s ním.

Červené vybarvení značí, že čtverec je součástí útvaru, černý křížek značí, že není.
Nyní máme čtyři pole, která mohou ohrozit náš čtverec G1.
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Z těchto čtyř polí musí do útvaru patřit lichý počet. Začněme tím, že rozebereme si-
tuaci, kdy do útvaru patří právě 3 z těchto polí. Pokud by do útvaru měla patřit všechna
pole kromě H3, dostáváme okamžitě spor, neboť spojnice středů I2 a F3 prochází polem
G3, tedy pole G3 musí být součástí útvaru. Potom spojnice středů čtverců G3 a I2 pro-
chází čtvercem H3, což je spor s konvexností, neboť H3 do útvaru nepatří. Analogicky
ze symetrie nemůžeme vynechat pole F3. Zbývají nám tedy 2možnosti, ze symetrie stačí
rozebrat jednu, předpokládejme tedy, že vynecháme čtverec I2.

Pro konvexnost můžeme rovnou přidat a vyškrtat některá pole

Podívejme se nyní na pole F1. Zatím má číslo 2. Jediná možná pole, která ještě může
ohrozit jsou D2 a E3. Aby mělo liché číslo, musí do útvaru patřit právě jeno z těchto polí.
Pokud by to bylo D2, E3 by do útvaru nepatřilo a dostaneme spor s konvexností. Proto
D2 můžeme vyškrtnout a E3 vybarvit, poté pro konvexnost vyškrtneme i D1.
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Zaměřme se nyní na pole E2. Zatím má číslo 2, do útvaru tedy musí patřit právě
jedno z polí D4, F4. Pokud by to ale bylo pole D4, spojnice D4 a H3 prochází přes pole
F4, které bychom vynechali, což je spor. Tedy F4 patří do útvaru a D4 ne. Ze symetrie
pro pole H2 můžeme přidat pole G4 a škrtnout pole I4.

Pokud by pole E1 bylo součástí útvaru, mělo by zatím skore 2. Jediné pole, které to
může změnit je pole D3, které by však spolu s polem E1 porušilo konvexnost. E1 tedy
nepatří do útvaru. Analogicky pole H1 nepatří do útvaru. Opět vyškrtejme nějaká pole
díky konvexnosti.

Podívejme se na pole E3. Nyní má skóre 3, avšak jediné pole, které by to ještě mohlo
změnit je H5, které tedy nemůže patřit do útvaru. Analogicky díky poli H3 nemůže do
útvaru patřit pole G5. Opět můžeme vyškrtat některá pole pro konvexnost.

Pole F3 má nyní číslo 2, jediné pole, které to může zachránit je pole H4. Analogicky
pro pole G3 musíme přidat pole E4.
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Pole E4 má nyní číslo 2, avšak už nemá jak svoji hodnotu změnit, čímž dostáváme
spor s tím, že jsme na začátku vybrali 3 pole, která budou naše spodní políčko ohrožovat.

Dále tedy řešme variantu, kde spodní pole ohrožuje právě jedno pole. Až na symetrii
máme dvě možnosti, tedy pole E2 a F3. Vyřešme nejprve případ, kdy jediné pole které
ohrožuje G1 je pole E2. Rovnou můžeme z konvexnosti některá políčka přidat a některá
vyškrtat.

Rozdělme si tuhle variantu na dva podpřípady, podle pole E3. Nejprve předpoklá-
dejme, že do našeho útvaru nepatří. To nám umožní vyškrtat všechna pole třetího řádku,
díky konvexnosti. Pole E2 má nyní číslo 1, což nám umožní vyškrtnout jediné další pole,
které by to mohlo změnit - C1.

Dále si i tento podpřípad rozdělme na varianty - nejprve předpokládejme, že pole C2
patří do útvaru. Konvexnost vynutí následující útvar
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Díky poli D1 nemůžeme přidat pole B2, díky poli E2 nemůžeme přidat G2, díky poli
F1 nemůžeme přidat H2 a díky poli F2 nemůžeme přidat H1. Díky konvexnosti už poté
nemůžeme přidat nic. Tento útvar zároveň vyhovuje zadání.

Nyní předpokládejme, že pole C2 do útvaru nepatří. Všimněme si symetrie útvaru
a toho, že kdybychom do útvaru přidali pole I1, dostaneme stejnou úvahou stejný útvar
jako výše. Vyškrtněme ho tedy také. Poli F1 musíme přidat skóre 1, tedy přidat do útvaru
pole D2, nebo H2. Přidáme-li pole D2, z konvexnosti musíme přidat E1, kterému poté
musíme přidat pole G2. Přidáme-li H2, z konvexnosti musíme přidat G2, kterému poté
musíme přidat E1. V obou případech jsme přidali pole E1 a G2, které tak musí být sou-
částí útvaru.

Poli F1 stále chybí skóre 1. Díky symetrii můžeme předpokládat, že mu přidáme pole
D2. Pole F2 má zatím číslo 0, musíme mu tedy přidat právě jendo z polí H1, D1. Přidáním
pole H2 dostaneme stejný útvar jako výše, přidádím pole D1 dostaneme útvar, který také
vyhovuje zadání.

Tím jsme vyčerpali tento podpřípad.
V druhém podpřípadě předpokládejme, že pole E3 do útvaru patří.
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Zaměřme se na pole F1. Z první části víme, že neexistuje řešení, které by obsahovalo
čtverec ve spodním řádku s hodnotou 3. Proto víme, že F1 musí mít hodnotu 1 a můžeme
tedy vyškrtnout D2 a H2. Díky tomu i spoustu dalších čtverců pro konvexnost.

Pole F2 má zatím hodnotu 0. To už může spravit poze pole D3, které tedy musíme
přidat, poté opět něco škrtneme z konvexnosti.

Pole E2 má hodnotu 1, což by mohlo pokazit pouze pole D4, můžeme ho proto vy-
škrtnout, s ním i pole C4 pro konvexnost. Nic víc tedy přidat nemůžeme a dostáváme
další útvar, který vyhovuje zadání.
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Poslední, co zbývá rozebrat je varianta, kdy úplně na začátku jediné pole, které bude
ohrožovat naše spodní políčko G1, bude pole F3. Konvexnost nám vynutí pár polí.

Teď přijde mega hustej argument: pokud bychom do útvaru přidali pole H1, které
leží ve spodním řádku, poloha pole F2 vůči poli H1 je stejná jako v případě, který už
jsme rozebrali. Mohli bychom tedy dostat pouze řešení, která už máme, neboť každý
takový útvar mohl vzniknout tak, že jsme začali polem H1 ve spodní řadě a k němu
přidali pole F2. Pole H1 tedy můžeme vyškrtnout a ze stejného důvodu i pole I1 díky
poli G2. Rozdělme nyní i tento případ na dva podpřípady. Nejprve předpokládejme, že
pole E3 není součástí útvaru. Díky konvexnosti můžeme škrtnout celý sloupec E.

Podíváme-li se na obrázek "zleva"(hlavu položte na pravé rameno), vyškrtnutí sloupce
E hraje stejnou roli jako bychom začali se spodním sloupcem. Pole F2 má jedinou mož-
nost jak získat liché číslo - pomocí pole G4, avšak při tomhle pohledu, pole F2 leží ve
spodním řádku a poloha vůči poli G4 je již vyřešená, nemůžeme tedy dostat nic nového
(upgrade předchozího argumentu). Pole E3 tedy musí být součástí útvaru. Dále rozdě-
lujme na dva podpřípady, podle pole H2. Pokud by patřilo do útvaru, můžeme vyškrt-
nout celý sloupec J a přidat pole G3 díky konvexnosti.
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Pole H2 nyní hraje roli políčka v nejspodnějším řádku při pohledu "zprava", víme,
že nemůže mít skóre 3, skóre 1 už má. Můžeme tedy škrtnout pole F1 a G4. Vyškrtejme
některá další pole pro konvexnost.

Pole G2 už může ohrožovat jedině pole F4, které tedy musíme škrtnout, neboť G2 už
má skóre 1. Z konvexnosti škrtáme i E4.

Nic už přidat nemůžeme, ale dostáváme spor například pro pole F2, které má skóre
0.

Druhá varianta podpřípadu je, když pole H2 není součástí útvaru. Z konvexnosti
můžeme vyškrtnout celý sloupec H .

Sloupec G hraje roli spodního sloupce při pohledu "zprava", pole G1 může hrát roli
začátečního políčka. Jeho poloha vůči bodu F3 je však ta již vyřešená (resp. s ní symet-
rická), proto už nemůžeme dostat žádné další řešení.
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Jediná neprázdná řešení tedy až na symetrie jsou
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